肌肉激活募集捕捉分析系统厂家

 
 
单价 面议对比
询价 暂无
浏览 47
发货 北京付款后3天内
品牌 世联博研
过期 长期有效
更新 2022-01-21 10:21
 
联系方式
加关注0

世联博研(北京)科技有限公司

企业会员第5年
资料未认证
保证金未缴纳
  • 北京
  • 上次登录 2022-04-27
  • 李先生 (先生)  
详细说明

肌肉激活募集捕捉分析系统,18618101725(微信同),QQ:736597338 ,信箱slby800@163.com

神经力学实验装置系统(神经力学科研装置)

——人体运动的多尺度神经力学模型系统

系统功能概述:

研究人体运动源于神经、肌肉和骨骼系统之间的协调互动。检查骨骼、肌肉和神经系统的综合作用,以及它们如何相互作用以产生完成运动任务所需的运动。
旨在了解运动及其与大脑的关系。结合肌肉、感觉器官、大脑中的模式发生器和中枢神经系统本身的努力来解释运动的领域。
应用包括了解运动神经肌肉和肌肉骨骼功能的潜在机制,对复合神经肌肉骨骼系统中神经机械相互作用等缓解健康问题以及设计和控制机器人系统。
该设备开发综合多尺度建模方法,包括肌肉、骨骼和神经模型。使用的高密度肌电图 (HD-EMG) 与盲源分离相结合,将干扰 HD-EMG 信号识别到由同时控制许多
肌肉纤维的脊髓运动神经元放电的尖峰列车集合中。开发的由体内运动神经元放电驱动的多尺度肌肉骨骼建模公式,用于计算所得肌肉骨骼力的高保真估计。
这将使神经控制的肌肉组织如何与骨骼组织相互作用的分析能力前所未有,因此将为了解神经肌肉/骨科疾病的病因、诊断和治疗开辟新的途径。


  • ●完整人体运动体内运动、动作、机械力协调互动的分析系统,全面、系统化的数据检测分析
  • ●神经、肌肉和骨骼系统之间控制、协调、互动的分析评估
  • ●骨骼、肌肉和神经系统综合作用运动、动作的实时捕捉、检查分析
  • ●研究人体、人机运动动作及其与大脑、骨骼、肌肉之间的关系
  • ●结合肌肉、感觉器官、大脑中的模式发生器和中枢神经系统本身解释运动的领域
  • ●研究运动神经肌肉和肌肉骨骼功能的潜在机制
  • ●复合神经肌肉骨骼系统中神经机械相互作用等健康问题
  • ●其他神经与人体所有运动、动作关联问题
  • ●确保组件间协同工作,为您独特的研究需求提供全面、系统化、高质量捕捉与数据分析



人体运动多尺度神经力学模型系统,肌电图驱动的肌肉骨骼模型,神经生物力学环境动力学间相互作用,仿生肢体肌电控制模型系统,肌肉激活力量调节分析系统,神经肌肉控制分析系统,运动控制协调神经力学模型,肌肉骨骼损伤生物力学实验装置,神经生物力学装置,神经动力学模型

典型应用:



人体肌肉骨骼分析系统,运动神经肌肉和肌肉骨骼功能系统,人体运动神经系统,可穿戴机器人的肌肉驱动控制系统,神经肌肉骨骼协调互动系统,运动动作协调能力检测分析系统,肌肉神经募集捕捉分析系统,人类运动控制模型装置,基于外骨骼模型的控制系统,神经动力学与力学实验设备

1、改善脑瘫患儿的临床决策




  • 脑瘫是常见的儿童神经系统疾病,在欧洲每例活产中有2-3例
  • 多层次的手术用于纠正肌肉骨骼异常和改善行走
  • 手术的结果是适度的(60%的患者没有改善),并且在过去的20年里停滞不前
  • 使用基于神经肌肉骨骼、统计和有限元模型的计算机模拟来估计临床相关参数,目的是提高我们对步态功能障碍的因果因素的认识,并增加未来积极治疗结果的数量
  • 对于我们的模拟,我们一方面开发方法来为基础研究问题创建高度特定主题的模型,另一方面开发快速简单的工作流程来将的建模集成到临床实践中
  • 我们与上的脑瘫治疗合作,包括佩伦伯格大学医院(比利时)、吉列儿童专科保健(美国)和斯佩辛整形医院(奥地利)的临床步态实验室



2、根据一个人的步态模式预测个体的骨骼生长




运动动作EEG分析系统,神经肌肉骨骼模型,神经力学模型,实时肌肉骨骼建模系统装置,运动多尺度神经力学实验,动作神经力学模型,运动动作EMG分析系统,人类运动行为实验设备,体内神经力学系统装置,人体运动作动神经控制分析系统

  • 由于骨骼的病理负荷,许多儿童在成长过程中会出现骨骼畸形
  • 矫正性截骨术,例如去旋转手术,用于矫正过度畸形
  • 儿童骨骼的机械反应提供了一个令人兴奋的机会,可以在早期纠正负载环境,避免骨骼畸形的发展
  • 我们使用基于神经肌肉骨骼和有限元模型的多尺度模拟来预测股骨的生长趋势,并研究什么样的负荷特性会导致典型的病理性生长
  • 为了验证我们的机械生物学生长预测,我们将我们的模拟结果与从两次采集的磁共振图像中获得的股骨几何形状的实际变化进行了比较
  • 调查临床干预对肌肉骨骼负荷和股骨生长的影响,使我们能够确定哪些早期干预有可能使股骨生长正常化
3、增加我们对复杂运动的运动控制的洞察力




  • 从简单的直立到复杂的运动,肌肉力量对于任何积极的人体运动都是必要的
  • 肌肉由神经电指令控制
  • 肌电图记录捕捉导致肌肉收缩的电信号,并能为神经肌肉控制策略提供见解
  • 中枢神经系统被认为使用特定任务的运动模块,称为肌肉协同,来降低运动控制的复杂性
  • 肌肉协同作用可以从肌电图记录中计算出来,并用于运动控制研究
  • 我们使用肌肉协同分析来研究人类如何完成复杂的运动和学习新的运动任务

4、估计健康和病理人群在不同运动期间的肌肉骨骼负荷



  • 由于不适当的重复运动导致的肌肉骨骼系统的过度负荷会导致损伤
  • 建议进行肌肉强化练习,以防止受伤并加速康复
  • 许多锻炼和康复建议是基于好意见,而不是基于证据的研究
  • 我们使用神经肌肉骨骼模拟来增加我们关于运动和锻炼对肌肉骨骼系统负荷的影响的知识
  • 在我们的运动分析实验室,我们收集和分析来自不同人群的数据,包括运动员,例如和业余舞蹈演员、肥胖儿童和健康成人
  • 我们的研究结果可能有助于预防未来的伤害,并设计基于证据的康复计划
5、多尺度神经力学
我们与人类中枢神经系统建立了临床上可行的接口,使我们能够接触到神经细胞的功能,如脊髓运动神经元。我们构建了人类神经-肌肉-骨骼系统的特定受试者多尺度模型,该模型可以将神经记录转化为对完整运动人体体内终机械功能的准确预测。

6、实时神经机械建模
当前的临床生物力学涉及冗长的数据采集和耗时的离线分析。我们开发了用于实时分析完整人体体内神经肌肉骨骼功能的创新方法。这将推动医疗技术的发展,包括内部机械力的实时生物反馈和患者-机器接口。

7、基于外骨骼模型的控制
我们开发了的在线肌肉骨骼建模方案,可以预测个体的神经肌肉骨骼系统如何对与残肢平行连接的可穿戴设备做出反应。我们使用动态模拟来预测复杂机器人外骨骼的机械功能。这些信息被实时用于为可穿戴机器人创建新的基于模型的控制范例,这些范例可以恢复或增强人类的运动能力。

8、基于假肢模型的肌电控制
我们根据脊髓运动神经元的放电时间和肌肉骨骼水平上新出现的物理行为的准确预测,定义并实验测试了新的人机界面。这导致了新的基于模式的仿生肢体肌电控制方案。解释个体神经肌肉骨骼系统的人机界面的发展将为通过仿生可穿戴辅助技术解决临床相关康复挑战带来前所未有的机遇。

9、运动增强技术
在“flex张力项目”的框架下,我们与杜氏亲代项目合作,开发和测试各种技术,用于杜氏肌营养不良症患者的意图检测及其与主动上肢辅助设备的整合。我们的目标是将这些技术转化为用户,这就是为什么我们的目标是以用户为中心的设备设计和意图检测开发。我们也对手功能的研究感兴趣,尤其是对患有糖尿病的人。



实时神经机械建模系统装置,控制神经力学仿真和感觉反馈模型系统装置,肌肉骨骼损伤生物力学实验系统,运动动作EMG分析系统,神经肌肉力学研究模型,3D动作控制分析系统,肌电图驱动的肌肉骨骼建模,人体平衡机制分析系统,神经力学设备,人体运动神经肌肉骨骼模型系统

更多详细方案,请咨询产品顾问:李经理,18618101725
  

我公司另外同一站式细胞组织材料生物力学和生物打印等生物医学工程科研服务-10年经验支持,



神经调节机制作如下基础性论述。

人体重要的运动反射—牵张反射

人体中存在神经支配的骨骼肌在受到外力牵拉时所能引起的受牵拉的同一块肌肉的反射活动在生理学中被称作牵张反射。牵张反射目前被分为两种类型,既腱反射和肌紧张两种。

2.1 腱反射是指快速牵拉肌腱时所发生的牵张反射 例如,叩击膝关节下的股四头肌肌腱,股四头肌既发生一次收缩,既为膝反射;又如,叩击跟腱使小腿腓肠肌发生一次收缩的牵张反射被称为跟腱反射;而肘反射是指叩击肱二头肌引起的肘部屈曲的牵张反射。一般认为腱反射的传入纤维直径较粗(12~20μm),其传导速度也较快(90m/s以上),其反射的潜伏期较短约0.7ms,故只能够一次突触接替的时间延搁,因此腱反射是单突触反射。腱反射的感受器是肌梭,中枢在脊髓前角,效应器主要是肌肉收缩较快的快肌纤维成分,故有时又被称之为位相性牵张反射。

2.2 另一种重要反射类型—肌紧张 肌紧张是维持人体正常姿势基本的反射活动,是姿势反射的基础。例如,人体取直立姿势时,由于重力的作用。其头部将向前倾,胸和腰将不能挺直,髋关节和膝关节也将屈曲,但由于骶棘肌以及颈部某些肌肉群及下肢的伸肌群等的肌紧张加强,所以人体就能抬头、挺胸、伸腰、直腿,从而保持直立的姿势。肌紧张的感受器也是肌梭,但中枢的突触接替有可能不止一个,而是多个,可能为多突触反射,效应器主要是肌肉收缩较慢的慢肌纤维成分。由于肌紧张的反射收缩力量并不大,只是抵抗肌肉被牵拉,表现为同一肌肉的不同运动单位进行交替性收缩,而不是同步收缩,不表现出明显的动作,所以肌紧张能持久地进行而不易发生疲劳。

牵张反射主要是使受牵拉的肌肉发生收缩,但同一关节的协同肌也能发生兴奋,而同一关节的拮抗肌则受到抑制(交互抑制),但并不影响其他关节上的肌肉运动。虽然屈肌和伸肌都产生牵张反射但脊髓的牵张反射主要表现在伸肌。屈肌的牵张反射不明显,主要表现为它的拮抗肌(既伸肌)受到了抑制。牵张反射,尤其是肌紧张的主要生理意义在维持站立姿势,因此伸肌比屈肌的牵张反射明显更符合人体生理情况。牵张反射的基本反射弧较为简单,但整体上牵张反射受高位中枢调节,而且可以建立条件反射。腱反射的减弱或消退,常提示反射弧的传入、传出通路或脊髓反射中枢的损害或中断;而腱反射的亢进在临床中常提示有高位中枢病变,如高位节瘫。因此,临床上常常通过检查腱反射来了解神经系统的功能状态。




心脏纤维化芯片模型现货 生产厂家 http://www.bioleader.cn/bioleader_Product_2064200776.html?_v=1630321857
细胞微通道拉伸仪现货 供应 http://www.bioleader.cn/bioleader_Product_2064203616.html?_v=1630319639
植物组织培养装置现货 生产厂家 http://www.bioleader.cn/bioleader_Product_2064204946.html?_v=1630321573
微流控双乳液滴制备系统产品介绍 http://bioon.com.cn/product/Show_product.asp?id=391958
细胞细胞流体剪切现货 生产厂家 http://www.bioleader.cn/bioleader_Product_2064200680.html?_v=1630321866
举报收藏 0评论 0
更多>本企业其它产品
力学性能测试机技术服务 黏液-碳酸氢盐屏障模型检测分析系统 复合材料技术服务 细微观力学特性测试技术服务 弯曲折弯电位测试分析技术服务 材料微观力学性能测试加载技术服务技术服务 乳化液滴组装 微尺度力学性能测试技术服务
网站首页  |  关于我们  |  支付方式  |  联系我们  |  隐私政策  |  法律声明  |  使用协议  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  网站留言  |  RSS订阅  |  违规举报  |  鲁ICP备16014150号-8