技术参数
产品归类 |
型号 |
平均粒径(nm) |
纯度 (%) |
比表面积 (m2/g) |
体积密度 (g/cm3) |
晶型 |
颜色 |
纳米级 |
CW-SiO2-001 |
20 |
99.9 |
80 |
0.23 |
近球形 |
白色 |
加工定制 |
根据客户需求适当调整产品纯度及粒度 |
主要特点
1产品纯度高,粒径小,分布均匀,比表面积大,高表面活性,松装密度低,气相法制备,克服了市场上湿化学法制备的颗粒硬团聚、难分散、纯度低等缺点;
2耐高温,表面面积大,粒径小;良好的分散性、悬浮性,振动液化性;具有很好的触变性;具有很好的补强和增稠作用;经过表面处理,具有更好的亲水和亲油性。
3表面存在大量的不饱和残键及不同键合状态的羟基,因表面欠氧而偏离了稳定的硅氧结构,所以具有高反应活性,粉体松装密度比较小,容易分散使用;
4我公司纳米氧化硅用气相法合成得,颗粒度小,均匀,可控,针对客户使用体系的不同,公司可以进行针对性的表面处理包裹,使得纳米氧化硅粉体可以稳定地分散在溶剂体系中,形成透明状或半透明状溶胶,应用在涂料、玻璃表面、电子封装等;
5对紫外光和可见光都呈现较高的反射特性,对紫外短波(200~280nm)的反射率达70%~80%;对紫外中长波(280~400nm)的反射率达80%~85%;对可见光(400~800nm)的反射率达85%以上;对800~1350波段的近红外线的反射率也达70%以上。
应用领域
1橡胶改性、密封胶陶瓷增韧、黏结剂改性、功能纤维添加剂、塑料改性、抗油漆老化添加剂;
2陶瓷、纳米陶瓷、复合陶瓷基片;
3聚合物:可增加聚合物的热稳定性和抗老化性;
4阻燃材料,涂料、研磨介质、化妆品等产品;
5在溶聚丁苯和氯化聚乙烯中添加少量纳米SiO2生产出的彩色橡胶制品的韧性、强度、伸长率、抗折性能及抗紫外线老化和热老化等性能均达到或超过三元乙丙橡胶;
6在传统涂料中添加少量纳米氧化硅后,很好的解决了其悬浮稳定性差、触变性差、抗老化性差、光洁度不高等问题。
技术支持
公司可以提供纳米氧化硅粉在橡胶、陶瓷、聚合物等中的应用技术支持,具体应用咨询请与销售部人员联系。
包装储存
本品为惰气包装,应密封保存于干燥、阴凉的环境中,不宜长久暴露于空气中,防受潮发生团聚,影响分散性能和使用效果。
纳米二氧化硅粉-纳米氧化物粉体 http://www.cwnano.com.cn/product-item-20.html
高质量廉价纳米线太阳能电池
太阳能是人类绝对清洁且取之不尽用之不竭的能源,然而,太阳能可以利用的时间每天有限,所以必须将太阳能存储起来,即太阳能电池。太阳能电池的普及需要解决三个条件:便宜的制造元件;廉价且能耗低的制造方法;高转化效率。
现在,美国科学家研制出了一种廉价制造高质量的纳米线太阳能电池的新技术,能源部下属的劳伦斯伯克利实验室材料科学分部的杨培东(音译)领导的科研团队利用以溶液为基础的阳离子交换化学技术,制造出了高质量的以半导体硫化镉为核、硫化铜为壳的核/壳纳米线太阳能电池。这种廉价且易制造的电池的开路电压和填充值(这两者共同决定太阳能电池能产生的醉大能量)都高于传统的平板太阳能电池,而且其能源转化效率为5.4%,可与传统太阳能电池相媲美。
传统的太阳能电池一般由超纯净的单晶硅圆制成,同时要求这种非常昂贵的材料的厚度约为100微米,以尽可能多地吸收太阳光,这就使制造硅基平板太阳能电池变成复杂、能耗大且昂贵的过程。而半导体纳米线太阳能电池与传统太阳能电池相比,拥有几大优势:分离、聚集电荷的能力更强;其可由储量丰富的材料而非需要经过严格处理的硅制成。然而,迄今为止,纳米线太阳能电池的转化效率较低,让其优势相形见绌,限制了其发展。
一年前,杨培东团队研发出了一种非常廉价的方法制造纳米线光伏电池,使用硅,用一个球形P—N结取代了传统太阳能电池的平面P—N结。在球形P—N结内,以P型硅纳米线为核,N型硅层在其周围形成了一个外壳。这种几何形状有效地将单个纳米线变为一个光伏电池,也大幅提升了硅基光伏薄膜的捕光能力。
现在,他们采用这种方法,通过以溶液为基础的阳离子交换反应,利用硫化镉和硫化铜制造出了核/壳纳米线。相对以前科学家们使用物理气相传输法来合成硫化镉纳米线,这次使用的湿法化学方法获得品质更高、长度更长的纳米线,新生成的单晶硫化镉纳米线的直径介于100纳米到400纳米之间,长达50毫米。”
科学家们接着将生成的硫化镉纳米线浸入氯化铜溶液中,在50摄氏度的温度下保留5秒到10秒,随后,阳离子交换反应将醉外层的硫化镉转化为一个硫化铜的外壳。
杨培东表示:“以前纳米线太阳能电池的开路电压和填充值远低于平板太阳能电池,造成其性能有欠缺的原因包括,进行高温掺杂处理时P—N结的表面复合问题以及很难对P—N结的质量进行控制。新方法为我们提供了一种简单廉价制造高质量纳米材料的方法。它也规避了气相制造过程所需的高温掺杂和沉积过程,使制造成本更低且再生性更好。”但是若要进行商业化生产,则至少将转化率提高到10%以上,这也算科学家们正在努力的方向!