RPA是全球企业软件领域中增长快的细分市场13868850106
社会正处于一个由信息化向自动化https://www.ai-indeed.com/,由自动化向智能化转型的时代,人工智能正渗透到各行各业,然而在面对个性化的场景、分散的系统和散落的数据时,如何通过人工智能为社会带来价值?构建数据中台或者PaaS平台也许是好的选择,但这些举措往往成本高企,过程漫长,前期企业很难为此买单,相比之下,RPA(机器人流程自动化)作为一个成熟却受限的应用一直被低估,它有着成本低,落地快的优势,可以成为当下人工智能的接盘侠。
基于这个目标,我们提出了“章鱼数字员工”的概念,RPA相当于章鱼的多条触手,执行多项复杂操作,AI相当于章鱼的大脑,做出合理的智能决策,组合而成就是一个无实体形态的“章鱼·数字员工”。设想一下,未来一个人带领一群机器人工作的场景,这将成为我们看到的未来。相比于唤作机器人,我们更愿意称之它为“数字员工”。
「实在智能」的产品以AI+RPA为主打,由AI云脑(Z-Brain)、机器人工厂(Z-Factory)、中枢控制台(Z-Commander)、终端机器人(Z-Robot)四部分组成,其中终端机器人(Z-Robot)可单独使用,也可结合企业所需嵌入某流程中使用。
一、Z-Factory机器人工厂
RPA的核心部分,又叫流程编辑器。基于前期对企业客户及RPA的研究调查,我们配置的流程编辑器拥有强大的稳定性和兼容性,同时内部组件库深度汲取了人工智能“SOTA”技术,能充分适应企业级复杂流程的创建与运行。
1、可视化低代码,小白也能轻松上手
当用户登录Factory系统的时候,可以快速的开启原历史打开或创建的应用。我们可视化的、流程块的节点编辑,通过简单的拖拉拽,就可以搭建符合当前用户场景的业务逻辑。如果对业务流程一知半解也没关系,我们内置了丰富的典型案例,用户可以在这案例的基础之上去构建适合它的场景的应用,做相应的简单的改造。当然也可以直接运行典型案例的流程,享受流程自动化带来的快感。
2、精准处理复杂流程,企业级管理就是小case
我们自研的RPA流程引擎相较于传统的开源的Work Flow的流程引擎,它能支持复杂场景的流程设计,并支持多任务进行以及支持流程节点的异常处理。以下面两个真实的案例客户为案例:
从这个流程图当中可以看到,在繁杂的业务流程中,Factory能完成多任务并行,同时处理各种异常情况的扭转,我们也在这个流程节点中加了一些Try-Catch的机制,方便我们用户处理各种异常情况。
3、智能检索+超丰富组件库,花式打造各种流程
我们的AI能力通过组件化低门槛的方式,方便用户进行简单的调用,同时我们也支持私有化的部署。我们自研的基于计算机视觉的cv的组件,当前已支持了Flash、Sliverlight以及PDF相应的一些图片上面的元素的拾取和操作。当然在其他类型,如OCR类型,我们已支持常见场景的图片类识别,比如说*、*、对账单、保险单、工业巡检等;在NLP这个类型中支持了具有通用性原则化的一些分词,包括关键词提取、语义分析、语义相似度分析等。,我们可以根据客户的场景去研发符合业务需求的能力。
4、公共参数可视化,既是拥抱变化也是维持稳定
大家都知道在互联网行业里,我们听得多的一句话就是拥抱变化。RPA数字员工,在安装部署的过程当中对环境的要求是非常的高,如果任何一个环节出现了变化,它的可用性就基本上降为0。有了公共参数可视化的配置组件,就完全可以解决以上这个问题,让我们数字员工具有能够拥抱变化的能力。它的实现的原理跟机制是把我们流程当中具有可变的因素、条件设为全局变量,支持可视化的配置输入,然后就可以提升我们整个流程应用的一个可维护性、可适配性。
二、Z-Commander中枢控制台
充当流程的指挥官。顾名思义,统筹多台设备上客户端机器人的管理和监督、进行智能运筹调度、任务计划制定。它具备一高一低两个特性:一、产品的稳定性高,二、维护成本低。
三、Z-Bot终端机器人
任务的执行者,其中Bot包含三种模态:任务式,流程式,交互式。它们可以灵活部署在客户端设备上,并通过时间轴和数据看板的方式展现Bot各个时间节点上,每个任务执行情况以及执行结果,让效率进一步得到提升。同时Bot也具备了Z-Commander的一些基础的能力,它可以脱离Z-Commander的进行灵活的一个控制,灵活的任务管理,灵活的定时任务设定。
四、AI云脑
实在智能在传统“三件套“架构的基础上,了自研AI能力平台“智能云脑”Z-Brain。其中,在自然语言处理领域,Z-Brain覆盖了包括BERT、ALBERT、RoBERTa等算法;在计算机视觉领域,Z-Brain覆盖了*、PMTD、RARE等算法。具备迭代、自动调参、多场景融合技术,可以输出AI组件,完成大规模复杂场景的智能决策。
首先是云脑部分的起点——Data Hub多元异构数据平台,由它接触我们客户的业务系统,进行数据的采集以及进行简单的处理,并将处理过后的数据传输到我们的标注平台,我们的业务好,在标注平台进行业务能力的一个标注,然后实现人工智能的人工部分,通过标注过后的数据,再以在线的方式传输到我们的算法平台,相当我们人工智能有了数据的石油,算法平台里面可以进行数据的提炼(预处理),包括模型的构建、参数的设置、模型的训练以及的打包发布,可以将模型直接发布到我们的决策平台,由决策平台来进行业务的对接以及模型的一个计算,决策平台会将后续从Data Hub过来的业务环境的数据进行一个模型的计算,输出计算结果或者是决策方案,然后由这个方案发布送到我们的Commander,Commander来调度具体的Bot来进行根据决策进行相应的一个执行。
这就是我们智能决策机器人的全链路,它实现了一个从数据到决策的闭环。我们相信AI+RPA有着无限的可能,在未来机器人的协作里,RPA的发展肯定是机器人之间的协同工作能够产生无限的自动化和智能化提效的解决方案,我们首先需具备AI加RPA的产品矩阵,并以此形成适用于各行各业的RPA解决方案库。
相关新闻:AI算法平台是如何炼成的|实在智能RPA学院
随着机器学习和深度学习等技术的突破,人工智能相关技术被广泛的应用到了各行各业。但是要将学术界、工业界先进的算法模型和实践经验,要快速的应用到自己的业务场景中还是需要做很多工作。
为了能个快速的进行算法相关实验,在实际的工业场景中落地,就需要一个具有高性能,可复用和能灵活迭代的算法平台。
同时,对于一些本身没有算法经验的团队或则个人,也可以使用算法平台,让各种人工智能的算法服务于自己的需求,对于所有人而言,人工智能都将变得唾手可得。
要打造一个满足当前需求的算法平台,需要从计算性能,平台易用性,满足真实业务场景需求等不同的方面进行考量,文本将带你了解如何打造一个面向AI的算法平台。
算法平台简介
算法平台的核心是模型+快速上线,因此算法平台的核心也是这两个模块。但是整个算法平台将有很多模块构成。
可快速调用的模型库,拥有XGBoost、GBDT、text-CNN、bert等主流的机器学习和深度学习模型。
可以根据业务场景灵活拖拽各种复杂的数据预处理和特征工程操作。
底层计算平台,为了满足大数据计算的问题,使用spark提供分布式流处理框架保证在较短的时间内计算出相应的结果。
当实验完成后,可以一键导出当前的预测流进行上线工作,不需要重新编写相关代码进行上线工作,一键完成。
自由的算法组件开放,平台本身只提供通用的常见的一些算法模型和特征工程组件,可以根据自己的业务需求编写相应代码并部署上线。
深度学习中的神经网络结构,可以根据用户的需求自行拖拽,集成了常见的CNN、RNN、LSTM和Dense等不同的网络层。
算法平台计算引擎
算法平台的计算引擎基于用于大数据实时计算的Spark框架。Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache项目,速度之快足见过人之处,Spark以其先进的设计理念,迅速成为社区的热门项目,围绕着Spark推出了Spark SQL、Spark Streaming、MLLib和GraphX等组件,也就是BDAS(伯克利数据分析栈),这些组件逐渐形成大数据处理一站式解决平台。
Spark是在借鉴了MapReduce之上发展而来的,继承了其分布式并行计算的优点并改进了MapReduce明显的缺陷,具体如下:
首先,Spark把中间数据放到内存中,迭代运算效率高。MapReduce中计算结果需要落地,保存到磁盘上,这样势必会影响整体速度,而Spark支持DAG图的分布式并行计算的编程框架,减少了迭代过程中数据的落地,提高了处理效率。
其次,Spark容错性高。Spark引进了弹性分布式数据集RDD (Resilient Distributed Dataset) 的抽象,它是分布在一组节点中的只读对象集合,这些集合是弹性的,如果数据集一部分丢失,则可以根据“血统”(即充许基于数据衍生过程)对它们进行重建。另外在RDD计算时可以通过CheckPoint来实现容错,而CheckPoint有两种方式:CheckPoint Data,和Logging The Updates,用户可以控制采用哪种方式来实现容错。
,Spark更加通用。不像Hadoop只提供了Map和Reduce两种操作,Spark提供的数据集操作类型有很多种,大致分为:Transformations和Actions两大类。Transformations包括Map、Filter、FlatMap、Sample、GroupByKey、ReduceByKey、Union、Join、Cogroup、MapValues、Sort和PartionBy等多种操作类型,同时还提供Count, Actions包括Collect、Reduce、Lookup和Save等操作。另外各个处理节点之间的通信模型不再像Hadoop只有Shuffle一种模式,用户可以命名、物化,控制中间结果的存储、分区等。
算法平台模型库
算法平台模型库主要包括三部分:
是由平台提供的通用算法库
可以由用户自主拖拽网络结构构建的算法库
由用户自行编写代码上传发布上线的算法库
和市面上的大多数机器学习平台类似,我们平台也提供了一些常用的算法,和主流的数据预处理和特征工程等操作,对于很多AI应用人员或则一些非AI类企业,可以使用算法平台自动进行模型训练、数据分析和特征工程。对于很多AI从业者和企业,可以快速获得AI能力,赋能于自己的业务场景,不需要过多的关注于算法本身的实现机制,就可以通过拖拽的方式,可视化的实现各种算法在自己业务场景中的应用。
随着深度学习的快速发展,其在图像,自然语言处理以及语音等相关领域都表现出了非常良好的性能。而深度学习的实现往往依赖于不同的神经网络层,算法平台将提供各种基础网络层,如果一些拥有算法能力的团队和个人,可以根据自己实际的业务场景,拖拽网络层,得到当前场景下的算法。
算法多种多样,加上各种数据预处理和特征工程相关的操作,有成千上万种,不可能都由平台提供,还有一些涉及到具体的业务场景的操作也不可能提前集成在算法平台上。这个时候就可以提供用户自行开发组件,根据一定的代码规范,可以使用python开发自己的组件并进行上线,可以进行自己算法的研究,也可以设计更满足自己的业务场景的相关数据处理和特征工程组件。
算法模型一键上线
当在算法平台完成了模型的调试或则开发之后,需要部署上线。因为线上环境和本地环境不同,在传统的算法平台,如果需要上线相应的模型,数据预处理等操作需要在线上环境进行重新实现,这对于开发人员即是工作量很大的事情也同时也可能会产生一些不必要的bug。因为当前算法平台支持一件导出预测pipeline到线上环境。在算法平台进行训练的时候,算法平台后台就会生成相应的训练pipeline和预测pipeline,这个对于用户本身是没有感知的,当完成训练并得到相应的可以上线的模型后,可以使用一键上线功能,就可以省去本身需要在线上环境中再重新实现的相关功能需求。
写在
为了降低算法在实际应用场景中的使用门槛,完成模型的快速训练上线。实际中的算法平台会打通数据平台,和打标平台和线上环境进行一整个流程的工作,工作流程图如下图所示:
为了降低算法在实际应用场景中的使用门槛,完成模型的快速训练上线。实际中的算法平台会打通数据平台,和打标平台和线上环境进行一整个流程的工作,工作流程图如下图所示:(重要的话说2遍)
该图出自作者,UI请假烫头
打造数据到算法模型的全流程大闭环,可以真正的将Al能力体现在各种业务场景中,而算法平台正是其中重要的一环,也是打通全链路的关键节点,所以一个好的算法平台可以起到很好地保障作用。
例如这样:
RPA机器人-RPA流程自动化软件供应商 http://www.118351.com/fenlei/show-35028.html
长期销售RPA机器人-RPA软件机器人 http://www.maimaisb.com/jishu/202106/08/35204.html
数字机器人-RPA软件-RPA机器人软件下载 http://www.maimaisb.com/news/202106/14/65504.html
长期销售Z-Factory机器人工厂 https://www.qydsj.cn/sell/show-817434.html
便民信息代发http://www.b2bxc.com/