神经力学实验装置系统(神经力学科研装置)
——人体运动的多尺度神经力学模型系统
系统功能概述:
研究人体运动源于神经、肌肉和骨骼系统之间的协调互动。检查骨骼、肌肉和神经系统的综合作用,以及它们如何相互作用以产生完成运动任务所需的运动。
旨在了解运动及其与大脑的关系。结合肌肉、感觉器官、大脑中的模式发生器和中枢神经系统本身的努力来解释运动的领域。
应用包括了解运动神经肌肉和肌肉骨骼功能的潜在机制,对复合神经肌肉骨骼系统中神经机械相互作用等缓解健康问题以及设计和控制机器人系统。
该设备开发综合多尺度建模方法,包括肌肉、骨骼和神经模型。使用的高密度肌电图 (HD-EMG) 与盲源分离相结合,将干扰 HD-EMG 信号识别到由同时控制许多
肌肉纤维的脊髓运动神经元放电的尖峰列车集合中。开发的由体内运动神经元放电驱动的多尺度肌肉骨骼建模公式,用于计算所得肌肉骨骼力的高保真估计。
这将使神经控制的肌肉组织如何与骨骼组织相互作用的分析能力前所未有,因此将为了解神经肌肉/骨科疾病的病因、诊断和治疗开辟新的途径。
- ●完整人体运动体内运动、动作、机械力协调互动的分析系统,全面、系统化的数据检测分析
- ●神经、肌肉和骨骼系统之间控制、协调、互动的分析评估
- ●骨骼、肌肉和神经系统综合作用运动、动作的实时捕捉、检查分析
- ●研究人体、人机运动动作及其与大脑、骨骼、肌肉之间的关系
- ●结合肌肉、感觉器官、大脑中的模式发生器和中枢神经系统本身解释运动的领域
- ●研究运动神经肌肉和肌肉骨骼功能的潜在机制
- ●复合神经肌肉骨骼系统中神经机械相互作用等健康问题
- ●其他神经与人体所有运动、动作关联问题
- ●确保组件间协同工作,为您独特的研究需求提供全面、系统化、高质量捕捉与数据分析
系统特点:
一套一站式交钥匙 3-D运动实时捕捉分析系统,旨在同步收集来自各种运动**、EMG(肌电图)、测力台、手传感器、EEG脑电图、
定量脑电图(quantitative EEG, qEEG)系统、数字视频、事件标记和其他模拟设备、虚拟现实和触觉设备的数据。
从丰富的分析工具集合中生成的数据可立即通过所有数据输出的图形显示进行回放。 令人惊叹的 3-D 计算机渲染对象动画可以被视为骨架、简笔画或人形。集成使用市场上
广泛的硬件实现对人体运动、大脑活动、眼球运动、肌肉募集和作用在身体上的外力的实时测量。
确保您选择的组件协同工作,为您独特的研究需求提供全面、系统化、高质量的数据。 数据完全同步,与其他组件准确.,并通过的计算机
渲染和图形显示实时呈现。 数据输出包括所有运动学和动力学数据,包括关节力和力矩,以及从虚拟环境同步接收的用户定义变量。 数据可在不需要编程的直观下拉菜单中使用。
用户编写的脚本可以定义额外的数据和事件,并与统计模块一起扩展该系统的固有功能。
典型应用:
1、改善脑瘫患儿的临床决策
- 脑瘫是常见的儿童神经系统疾病,在欧洲每例活产中有2-3例
- 多层次的手术用于纠正肌肉骨骼异常和改善行走
- 手术的结果是适度的(60%的患者没有改善),并且在过去的20年里停滞不前
- 使用基于神经肌肉骨骼、统计和有限元模型的计算机模拟来估计临床相关参数,目的是提高我们对步态功能障碍的因果因素的认识,并增加未来积极治疗结果的数量
- 对于我们的模拟,我们一方面开发方法来为基础研究问题创建高度特定主题的模型,另一方面开发快速简单的工作流程来将的建模集成到临床实践中
- 我们与上的脑瘫治疗合作,包括佩伦伯格大学医院(比利时)、吉列儿童专科保健(美国)和斯佩辛整形医院(奥地利)的临床步态实验室
2、根据一个人的步态模式预测个体的骨骼生长
- 由于骨骼的病理负荷,许多儿童在成长过程中会出现骨骼畸形
- 矫正性截骨术,例如去旋转手术,用于矫正过度畸形
- 儿童骨骼的机械反应提供了一个令人兴奋的机会,可以在早期纠正负载环境,避免骨骼畸形的发展
- 我们使用基于神经肌肉骨骼和有限元模型的多尺度模拟来预测股骨的生长趋势,并研究什么样的负荷特性会导致典型的病理性生长
- 为了验证我们的机械生物学生长预测,我们将我们的模拟结果与从两次采集的磁共振图像中获得的股骨几何形状的实际变化进行了比较
- 调查临床干预对肌肉骨骼负荷和股骨生长的影响,使我们能够确定哪些早期干预有可能使股骨生长正常化
- 从简单的直立到复杂的运动,肌肉力量对于任何积极的人体运动都是必要的
- 肌肉由神经电指令控制
- 肌电图记录捕捉导致肌肉收缩的电信号,并能为神经肌肉控制策略提供见解
- 中枢神经系统被认为使用特定任务的运动模块,称为肌肉协同,来降低运动控制的复杂性
- 肌肉协同作用可以从肌电图记录中计算出来,并用于运动控制研究
- 我们使用肌肉协同分析来研究人类如何完成复杂的运动和学习新的运动任务
4、估计健康和病理人群在不同运动期间的肌肉骨骼负荷
- 由于不适当的重复运动导致的肌肉骨骼系统的过度负荷会导致损伤
- 建议进行肌肉强化练习,以防止受伤并加速康复
- 许多锻炼和康复建议是基于好意见,而不是基于证据的研究
- 我们使用神经肌肉骨骼模拟来增加我们关于运动和锻炼对肌肉骨骼系统负荷的影响的知识
- 在我们的运动分析实验室,我们收集和分析来自不同人群的数据,包括运动员,例如和业余舞蹈演员、肥胖儿童和健康成人
- 我们的研究结果可能有助于预防未来的伤害,并设计基于证据的康复计划
我们与人类中枢神经系统建立了临床上可行的接口,使我们能够接触到神经细胞的功能,如脊髓运动神经元。我们构建了人类神经-肌肉-骨骼系统的特定受试者多尺度模型,该模型可以将神经记录转化为对完整运动人体体内终机械功能的准确预测。
6、实时神经机械建模
当前的临床生物力学涉及冗长的数据采集和耗时的离线分析。我们开发了用于实时分析完整人体体内神经肌肉骨骼功能的创新方法。这将推动医疗技术的发展,包括内部机械力的实时生物反馈和患者-机器接口。
7、基于外骨骼模型的控制
我们开发了的在线肌肉骨骼建模方案,可以预测个体的神经肌肉骨骼系统如何对与残肢平行连接的可穿戴设备做出反应。我们使用动态模拟来预测复杂机器人外骨骼的机械功能。这些信息被实时用于为可穿戴机器人创建新的基于模型的控制范例,这些范例可以恢复或增强人类的运动能力。
8、基于假肢模型的肌电控制
我们根据脊髓运动神经元的放电时间和肌肉骨骼水平上新出现的物理行为的准确预测,定义并实验测试了新的人机界面。这导致了新的基于模式的仿生肢体肌电控制方案。解释个体神经肌肉骨骼系统的人机界面的发展将为通过仿生可穿戴辅助技术解决临床相关康复挑战带来前所未有的机遇。
9、运动增强技术
在“flex张力项目”的框架下,我们与杜氏亲代项目合作,开发和测试各种技术,用于杜氏肌营养不良症患者的意图检测及其与主动上肢辅助设备的整合。我们的目标是将这些技术转化为用户,这就是为什么我们的目标是以用户为中心的设备设计和意图检测开发。我们也对手功能的研究感兴趣,尤其是对患有糖尿病的人。
更多详细方案,请咨询产品顾问:李经理,18618101725
我公司另外同一站式细胞组织材料生物力学和生物打印等生物医学工程科研服务-10年经验支持,
人体运动神经肌肉骨骼模型系统,脊髓运动神经元放电时间和肌肉骨骼水平,人体运动神经力学建模仿真系统,动态模拟测人外骨骼机械功能,神经动力学模型装置,神经力学研究实验装置,实时神经机械建模,外骨骼模型的控制分析系统,用于共生人机运动交互的人类神经肌肉系统的多尺度建模,肌电图驱动的肌肉骨骼模型装置系统
批发心脏组织芯片模型现货 厂家 http://www.bioleader.cn/bioleader_Product_2064206135.html?_v=1630319274
供应蠕变试验系统 http://www.chem17.com/st450656/product_36043258.html
供应剪切力细胞滚动检测分析芯片现货 厂家 http://www.bioleader.cn/bioleader_Product_2064206035.html?_v=1630319277
Kord 85x13mm培养皿现货促销 http://www.chem17.com/st421508/product_35440871.html